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A study is made of the possibility of confining a thermonuclear plasma with tem- 
perature T ~ i0 ~ eV and density n ~ i0:8 cm -3, not by magnetic field pressure, 
but by hard walls of a chamber (nonmagnetic containment). This method of plasma 
containment has some specific features: the occurrence of plasma flow, formation 
of a dense layer at the wall, increased importance of radiative losses from the 
plasma, and more. A numerical solution of the plasma-transport equations is 
used to investigate the influence of these features on the energy lifetime of 
the plasma. The results indicate that the additional energy losses by the plas- 
ma are not catastrophically large, and, in principle, nonmagnetic containment of 
a dense plasma is possible. 

i. Description of the Problem 

In traditional systems of containment of a plasma with density n ~ 101a-10 ~4 cm -3 
the main problem is to guarantee reliable separation of the plasma from the chamber walls~ 
This is possible only under conditions when the magnetic pressure H2/8~ exceeds the gas- 
kinetic pressure 2nT of the plasma (magnetic containment). On the transition to a plasma 
with density n ~ i017-I0 :s cm -a and temperature T ~ 104 eV, magnetic containment requires 
the use of magnetic fields in the megagauss range, and these are hard to produce. It is 
therefore of interest to consider the possibility of confining a dense plasma by the walls 
of a chamber ("nonmagnetic" containment). With this method of containment, the magnetic 
field is required only to reduce the transverse heat conduction, which can already be 
achieved with very moderate magnetic fields (such that $ = 16 ~nT/H 2 >> i). The possibil- 
ity of nonmagnetic containment was already noted by Sakharov [I], and since then has been 
frequently mentioned by different authors. 

The characteristic differences of nonmagnetic containment of a plasma with B >> I from 
the case of small B are most clearly manifested in a problem with initial conditions. Sup- 
pose at the initial time a homogeneous cold plasma fills the interval between two flat 
parallel walls (for simplicity, we consider the case of planar geometry). Since in practi- 
cally interesting cases the heating time* is appreciably longer than the inertial time, the 
total pressure 2nT + H2/8~ in the plasma will also be homogeneous over the section after 
the heat source has been switched on. If B << i, then mechanical equilibrium in the sys- 
tem is guaranteed by the pressure of the magnetic field, and one can assume that the heat- 
ing takes place at fixed density of the plasma (it is assumed that the heating time is 
much shorter than the plasma diffusion time at right angles to the magnetic field). But 
in the case of a plasma with B >> i the condition nT = const must be satisfied, i.e., 
n ~ I/T. ~ Therefore, as it is heated the plasma will flow out from the relatively hot cen- 
tral regions to the cold walls, where a region with very high density develops. 

The presence of this cold wall layer can, in principle, lead to a sharp increase in 
the role of bremsstrahlung, which can leave the region of the plasma freely. The point is 
that the emission power from unit volume of t~e plasma, Qrad' which is proportional to n2~, 

*The heat source can, in particular, be a relativistic electron beam. 

" N0v0sibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 6, pp. 3-13, November-December, 1974. Original article submitted June 3, 1974. 

�9 1976 Plenum Publishing Corporation, 22 7 West 1 7th Street, New York, N.Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording 
or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $15.00. 

731 



increases as T-~/2 with decreasing temperature subject to the condition nT = const. In ad- 
dition, flow of the plasma gives an additional flux of heat to the walls (in excess of 
the diffusion flux). The aim of this paper is to establish ho~ these features of nonmag- 
netic containment influence the dynamic heating of a dense plasma and its energy lifetime. 
Such an investigation is important, since for a thermonuclear plasma with temperature T ~ 
i0" eV the time of radiative cooling Tra d = 3nT/Qrad even for a D--T mixture is only an 
order of magnitude greater than the necessary time of plasma containment that follows from 
the Lawson criterion: Th(sec ) = 1014/n(cm-S). This increase in Qrad could mean that non- 
magnetic plasma containment cannot, in principle, be used. 

The problem of nonmagnetic containment of a plasma is made very much more complicated 
by the need to take into account various effects that occur directly next to the wall such 
as the incomplete ionization of the plasma and the recombination radiation, the violation 
of the condition that the radiation should not be trapped, the nonideal behavior of the 
plasma and the related changes in its transport coefficients, destruction of the wall by 
the heat flux and fast particles of the plasma, and penetration into the plasma of heavy 
impurities from the wall. 

In this paper, we consider only the behavior of the plasma in the regions with rela- 
tivelyhigh temperature (T ~ i0 eV). The presence of the wall is taken into account in 
the form of some simple boundary conditions imposed on the parameters of the plasma at 
the point where its temperature is still sufficiently high for one to be able to ignore 
the wall effects listed above (in the cases discussed below, the temperature of this "ef- 
fective" wall is chosen in the range 3 to i00 eV). 

Analysis of the questions relating to the increased radiative loss and convective 
heat transport to the cold walls in the framework of this simplified model shows that for 
reasonable parameters of the plasma its lifetime satisfies the Lawson criterion with some 
margin. 

However, it must be bornein mind that this result has the meaning of only a neces- 
sary condition for the possibility of nonmagnetic containment, since the role of the pro- 
cesses that take place at the wall itself (in the region T s 3 eV) is not entirely clear. 
However, there are some indications that these processes are not too important: Variation 
of the temperature of the effective wall has little influence on the characteristics of 
the hot plasma (for details see w167 and 4). 

In the plasma one can have the excitation of various microinstabilities (the system 
considered here is stable against the most dangerous magnetohydrodynamic instabilities), 
and therefore, besides the classical transport coefficients, we also consider the case 
of anomalous (Bohm) thermal conductivity of the plasma. The results obtained give corres- 
pondingly approximate values of the upper and lower limits of the energy lifetime of the 
plasma. 

2. Statement of the Problem 

We consider a layer of plasma bounded by fixed perfectly conducting planes x = • 
whose temperature is assumed constant. The magnetic field is parallel to the walls. The 
equations of plasma transport at right angles to the magnetic field can be written in the 
form (notation as in [2]) 

M n  dV O (  H~ ) On 
d-"F : - -  ~ 2nT ~ ~ , Ot + (nv) = O 

o.  o (vH)= c, o (_~_Z o . )  ~ o ( ~:'r or)  

3 ~ (nT) ~ 3 (nTv) § 2 n r  ~ = ~ -  u~ ~ § 4~-----W- ~-~ + 

-~- a~ne Ox Ox ~ i 6 ~ •  ~ + Qt - -  Qrad 

Here v is the mass velocity of the ions directed along the x axis perpendicular to 
the walls; ~• o• the thermal conductivity and the conductivity of the plasmaat 
right angles to the magnetic field; ~A uT is the coefficient that determines the component 
of the thermal force at right angles to 7T and H: 

( 2 . 1 )  
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Qrad = t0~x3 (ncm3) 2 V T @~-1 ev .  cm "3. sec- '  

Qrad is the power of the bremsstrahlung leaving the plasma (see, for example, [3]) 

Qt = W {exp [t - (x / L) ~1 - -  t}  t exp ( - - t  / At) (e - -  l ) - l ( h t )  -~ 

Qt is the volume power of the external heat sources (this dependence can imitate, for 
example, the heating of the plasma by a relativistic electron beam). 

Thermonuclear heat sources are not included in the problem, since in our opinion it 
is at present more important to calculate model experiments in which the maximal tempera- 
ture of the plasma is several times lower than the thermonuclear. 

The temperatures and densities of the electrons and ions can be assumed equal, the 
radiation regarded as untrapped, and viscous effects regarded as unimportant. As we have 
already noted, inertial effects are small, but the inertial terms are retained in the equa- 
tions of motion for convenience in numerical integration. 

The system (2.1) was solved numerically on the interval 0 ~ x S L with the initial 
and boundary conditions 

t = O ,  n = n o ,  H = H o ,  T =  Tx, 
OT OH 

x = - O ,  --~x = Ox = 0 ,  v = O  

x = L ,  T=T~,  v = O  

v = O  

The last relation describes the boundary condition on a perfectly conducting wall. 
This approximation is reasonable if the magnetic field penetrates during the time of the 
experiment into the wall through a distance that is short compared with the thickness of 
the "magnetic" wall layer A H = (3 in H/~x)-~: 

C2 
4rt~• t <~ A~ ~ 

This condition for the values t ~ I0 ~ sec and AH~ 6.10 -I cm obtained below has the 
form 

i >~ 1016 sec" 

and is satisfied for good conducting metals. 

Some preliminary results of the calculations are contained in [4]. 
nonmagnetic containment of a dense plasma is also considered in [5-7]. 

The problem of 
In [5], a solu- 

tion is found for the problem of stationary nonmagnetic containment by walls when the 
heat losses due to heat conduction and radiation are compensated by thermonuclear sources. 
It is found that the existence of stationary solutions with physical meaning depends 
strongly on the magnetic field profile. However, in [5] the magnetic field is not deter- 
mined in a self-consistent manner, but specified arbitrarily. 

In [6], a study is made of a stationary thermonuclear reactor with dense plasma in 
which the fuel (deuterium and tritium) continuously diffuses from the walls to the burn- 
ing zone, while the reaction products (~ particles) diffuse in ~he opposite direction. 
Compared with the present paper, the results of [6] correspond to a very different time 
scale. In this paper we are concerned with times of the order of the Lawson time, where- 
as the solution of [6] is established over a time that is much greater than the time of 
complete burning, which is two orders of magnitude longer than the Lawson time (for a D--T 
mixture). It should also be noted that in [6] the transport coefficients for a magnetized 
plasma are used, and this is not valid in the cold wall regions. 

The dynamics of cooling of a dense plasma in contact with a cold wall is discussed 
in [7]. However, [7] deals with a plasma whose parameters are such that radiation is un- 
important. 

3. Classical Heat Conduction 

In this case the characteristic time in the problem is the time of cooling of the 
hot plasma by ion heat conduction at right angles to the magnetic field (it is assumed 

733 



that in the hot plasma the electrons and ions are magnetized and the plasma is a deuter- 
ium plasma): 

zk = L2eHo (m / M)V, [cT050 (no, To,H~]-' 

The m a g n e t i z a t i o n  p a r a m e t e r  50 ~ Ve/~He i s  t h e  r a t i o  o f  t h e  Coulomb f r e q u e n c y  o f  
s c a t t e r i n g  o f  e l e c t r o n s  t o  t h e i r  c y c l o t r o n  f r e q u e n c y .  The c h a r a c t e r i s t i c  t e m p e r a t u r e  To 
i s  r e l a t e d  to  t h e  h e a t i n g  power by To = W/3no, so t h a t  t he  t e m p e r a t u r e  i n  t h e  c e n t e r  i n  
t h e  c a s e  o f  h o m o g e n e i t y  o f  t he  p lasma and in  t h e  a b s e n c e  o f  h e a t  l o s s e s  would i n c r e a s e  to  
To. In  r e a l i t y ,  t h e  maximal  t e m p e r a t u r e  i n  t h e  c e n t e r  does  n o t  r e a c h  t h i s  v a l u e ,  s i n c e  
some o f  t h e  e n e r g y  i s  l o s t  by h e a t  c o n d u c t i o n  and r a d i a t i o n ,  and some i s  used  to compress  
t h e  c o l d e r  l a y e r s  o f  t he  p la sma .  

In  Eqs.  ( 2 . 1 )  �9 and in  t h e  b o u n d a r y  c o n d i t i o n s  i t  i s  c o n v e n i e n t  t o  go o v e r  t o  d i m e n s i o n -  
l e s s  v a r i a b l e s  t a k i n g  as  t h e  s c a l e s  o f  x ,  n ,  H, T, t ,  and v t he  q u a n t i t i e s  L, no ,  Ho, T k ,  
and Tk/L,  r e s p e c t i v e l y :  

dv 0 (  H~ ) 
en --~ = - -  -g~- n T + - - ~ o  (3.1) 

dn Ov 
d--~- + n--~ = O 

( 3 . 2 )  
X m i gt X n  M-M-- ~ '/' 5~ (n~ T~ H~ d--- ( H--~- ~ . . . .  ~on ~x  ~ ~ -~ --~x - ~ [ : -  H ' O H x "Jc ---n- ] 0 ,( 5 '  "-~X T 

(3.3) 

( # ) ' / ' 5 0 ( ~ 0 ,  To, H o ) ( n  dT 2 dn 0 OT 4 0 O H  4 " H  [ 46o H OH OT 
x t w v  g 

�9 t . . . . .  t exp (1 --x2)-- t an2V -? (T__ T)~ ] (3.4) 

�9 0T t 0H x=o Vx=o~V:r T~=I=T ;  ~ = o - -  ax = 0  

{ 450 H o t! aT 

Here in writing down the equations and the conditions for the dimensionless quantities 
we have retained the previous notation. The parameter e = ML2/2ToTk 2 characterizes the 
role of inertia of the plasma (in the cases of practical importance e << i), and a is 
equal to the ratio of the time T k to the time of radiative cooling of the hot plasma Tra d 
(~ = Tk/Tra d, Tra d = 3noTo/Qrad (noTo)). The quantity T << i is the dimensionless tempera- 
ture of the wall. The factor (T -- y) 2/y2 + (T -- y) 2 in the last term on the right-hand 
side of Eq. (3.4) takes into account the fact that the plasma cannot cool to a temperature 
below the wall temperature as a result of radiation. It follows from the numerical cal- 
culations that although the volume power of the radiation Qrad in the wall layer is high 
the total radiation fQraddX from this layer is a small part of the radiation from the 
whole volume of the plasma. Therefore, the artificial elimination of the radiation from 
the wall has no practical influence on the results. The coefficients ~t and ~2 are pro- 
portional, respectively, to the thermal force and the thermal conductivity. Their depend- 
ence on ~o was determined by means of interpolation formulas (see [2]): 

350 ( l t ) (3.5) 
5 1 ~  2 + 4 6 0 2 ,  53 ~ 5 0  0 .6+602 + 3.10-2+37.5602 

( t h e  te rms  in  ~2 t a k e  i n t o  a c c o u n t  t he  c o n t r i b u t i o n s  o f  the  e l e c t r o n s  and i o n s ,  r e s p e c t i v e l y ,  
t o  t he  h e a t  c o n d u c t i o n ) .  Note  t h a t  t h e  v a l u e  o f  ~o a t  t h e  w a l l  may d i f f e r  by s e v e r a l  o r d e r s  
o f  m a g n i t u d e  from ~o(no ,  To, Ho) and even  become g r e a t e r  t h a n  u n i t y  ( t h e  p lasma i s  demag- 
n e t i z e d ) .  

The r e s u l t s  o f  t he  n u m e r i c a l  c a l c u l a t i o n s  a r e  i l l u s t r a t e d  by t h e  f i g u r e s  and n u m e r i -  

TABLE i. 
o t 10 t0~ t0 3 

Tma x 0.3~4 0. 365 0. 367 0. 355 
nm 0.93 0.68 0. 523 0.92 
%, 0.42 0.36 0.36 0.48 

cal data given in Table i. The characteristic para- 
meters of the problem were chosen as follows: c = 10 -6 , 
At = 0.2, a = 0.i, ~o(no, To, Ho) = 10 -4 , Y = i0 -s 
(note that a further decrease of T did not influence 
the nature of the processes in the region of hot plas- 

ma) o 

734 



T n H 

0.3 ~ 3 

o.z I \ 

0 O.Z 0./4 0.6 0.8 x 

Fig. 1 

f.2 

1.0 

0.8 

O.Ll 

O.Z 

0 

nz~ I 

O.f. O.L/ 

// 
{ 

7/ 
/ 

O.G 0.8 x 

Fig. 2 

0.~ 

0./4 

0 O.Z 

n 

f 

0./1 0.6 ~. 

Fig. 3 

// 

3 

f 

1 
0 

// 
I 

O.f 05 

Fig. 4 

Figure i shows the profiles of the density n, the temperature T, and the magnetic 
field H for Bo = 102 at the time t = t* when the temperature in the center is maximal. 
As can be seen from Fig. i, the formation of a wall layer in this case is not strongly 
expressed: nmax/nmin = 6.3. This is because the magnetic field is transported from the 
center with the plasma, and at the walls magnetic pressure plays the main role (BIx=l << 
i). In this case Hmax/Hmin = 8.3 (because of the presence of the thermal force this 
ratio is even greater than if the field were frozen into the plasma). The maximal tem- 
perature in the center is 0.37. 

We also give the value of the "efficiency" q, which is equal to the ratio of the 
thermal energy stored in the system at the time t = t* to the total energy of the source. 
For the case considered, q = 0.28. The rather small value of q and the low maximal tem- 
perature are explained by the fact that the characteristic heating time At is only half 
the plasma cooling time Tz/2, which is defined as the time during which the temperature 
in the center of the system falls to half the maximal value. In Table i, we give the 
maximal temperature at the center of the system Tmax, the density n m in the center at the 
time t = t*, and also the cooling times Tz/2 for different values of the parameter ~o. 

Figure 2 shows the profiles of the plasma pressure nT, the radiation density n2r 

and the emission A = In~Tdx n~Tdx for Bo = 102 at the time t*. Figures 3 and 4 are 

the density, the magnetic field, and the temperature as functions of the time, respectively, 
in the center of the system and at the wall. It can be seen from the graphs that when the 
heating ends a flow of plasma back to the center begins (the density in the center begins 
to increase). Figure 5 shows the magnetization profiles of the electrons and ions at t*. 

Let us give the values of some of the quantities for thermonuclear parameters of the 
plasma: no = 1018 cm -3, Ho = 105 G, To = 104 eV. The transverse dimension L of the system 
is chosen in such a way that the cooling time Tz/2 is of the order of the Lawson time for 
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the D--T mixture: r h = 10~a(n cm3)-~sec = 10 -4 see. Then the transverse dimension of the 
system is L = 2.icm) the radiation losses are /QraddX = 6.4.106 J.cm-a-sec -z (t = te); the 
heat flux to the wall is q = 1.3.107 J,cm-2.sec -z (t = t*). 

4. Bohm Heat Conduction 

The influence of instabilities can be taken into account approximately in Eqs. (2.1) 
if w e is understood as some effective electron-scattering frequency, which can be much 
greater than the Coulomb one. In a given magnetic field, the thermal conductivity of the 
plasma is maximal for v e = ~He (this gives a thermal conductivity coefficient of the order 
of the Bohm coefficient). Therefore, in this section we shall assume that ~o = i. 

Since the characteristic time is the Bohm time T B = LieHo/cTo, it is convenient in 
this case to make the time and Velocity dimensionless by dividing by r B and TB/L, respec- 
tively. 

The remaining variables are made dimensionless in the same manner as in the classical 
case. The parameters e and ~ are equal to 

e = M L ~ / i T o ~ B  2, ~ = ~ B / ~ r ~  

The values of ~, At, ~, and ~ in the calculations were the same as in the classical 
case. 

The strength and sign of the thermal force are determined by the way in which the 
frequency of electron scattering on fluctuations depends on the electron velocity. Since, 
generally speaking, this dependence is unknown for the oscillations that lead to the Bohm 
transport coefficients, we have considered two cases: with thermal force determined by 
(3.5), and without thermal force, which corresponds to ~ = 0. Comparison of the calcula- 
tions in the two cases shows that the characteristics of the hot plasma then differs little, 
i.e., the results depend weakly on the actual form of the thermal force. 

Figure 6 shows the n, T, and H profiles for t = t* with allowance for the thermal 
force. Figure 7 shows the same dependences in the absence of the thermal force. One can 
clearly note the formation of a thin cold layer at the wall with density approximately two 
orders of magnitude greater (~70 and ~270, respectively) than the initial. The dimension- 
less thickness & of the layer, defined as Id in n/dxl -~, is equal to i0 -~ in the first 
case and 5"10 -4 in the second. The magnetic field is expelled to the walls much less 
strongly than the plasma is (HIx= I = 5.7 in the presence of a thermal force, Hlx=l = 2.5 
without it). The reason for this is the important role of diffusion of the magnetic field 
on account of the high electron-scattering frequency in the Bohm ease. 

The efficiency is found to have the values n: z 0.7 and D~ = 0.6. It is higher here 
than in the classical case because, at the same values of the dimensionless parameters >, 
~t, ~, and y, the ratio of the heating to the cooling time of the plasma is much smaller. 

Figure 8 shows the profiles of the plasma density nT, the radiation density ni/T, and 

the emission A : ~Qraadx ' at the time t*. The plasma pressure is almost constant 
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TABLE 2 

~o t0 -1 

Tma x 0.698 

am 0.58 

t I0~ 10 a 

O. 706 O. 79 O. 75 

0.58 0.54 0.43 

1.v i . 7  2 

TABLE -3  

.... no= 1!: s cm-3: Tx= 1;' eV, 
I_Ho= 10 G 

Iwith thermal without 
[force thermal force 

L~ c m  

fQrad, J " cm-2" sec ' l  
Qraa(mak)/Qraa (rain) 

q ] x=L, .J" cm'2"  sec-I 
6,cm(6 = t /  dlnn/dx]max ) 
Hmax/Hmin 
~2m aX) c m  "$  

Tmax, eV 

T1]2, s e a  

5 .  

8 

2.9.107 

6.5.i0~ 

7.2.10: 

8.10 -~ 

33.5 
6:8.t019 

10~ 

10-* 

6.5 

2.6"10 ~ 

t .4.10~ 

2.7-10 s 

3.3.10 4 

5.6 
2.7.1020 

t0 ~ 
t0-4 

scheme of Numerical Integration 

over the section, and magnetic pressure plays 
a role only at the wall itself. The graphs 
for the emission show that although the radia- 
tion density is high in the wall region, the 
region of the hot plasma makes the main con- 
tribution to the total emission. 

Figures 9 and i0 show the density, mag- 
netic field, and temperature as functions of 
the time in the center of the system and at 
the walls. 

In Table 2 we give the maximal tempera- 
ture in the center of the system, the density 
in the center of the time t = t*, and the 
plasma cooling time ri/2 for different values 

of ~ o .  

As can be seen from Table 3, in which we 
give the characteristics of a system with Bohm 
heat conduction for thermonuclear parameters 
of the plasma (no = i0 Is cm -3, Ho = 10 5 G, 
To = 10 4 eV), the total radiation losses may 
be an appreciable fraction of the loss due to 
heat conduction. 

For the numerical calculation, it was found to be important what variables were used 
to express the original equations. If the original system is expressed in Eulerian co- 
ordinates, their difference approximation on a spatial mesh with constant step leads to 
large errors in the determination of the gradients near the wall, which leads to the forma- 
tion of large accelerations in the wall layer, the excitation of oscillations, and noncon- 
servation of the mass. Introduction of the Lagrangian variable dm = n(x)dx gives rise to 
a mesh that becomes denser in the region of high concentrations and therefore gives a more 
accurate approximation of the spatial derivatives. However, an attempt to satisfy the con- 
dition V(nT + Ha/Bo) = 0 in the calculation led to a strong computational instability, 
which can be explained as follows. Under the condition of constancy of pressure over the 
whole volume, the concentration n is determined from the equation 

nT + H 2 / ~o = I (t) ( 5 . 1 )  

and the velocity from the continuity equation. If (5.1) is differentiated with respect to 
i 

the time, the values of dT/dt and dH/dt are substituted, and the condition ~n(x)dx consL , 
0 

is used, one can determine the derivative df/dt. However, the errors of numerical differ- 
entiation and integration give an error of Af at each time step. The maximal error in the 
determination of the concentration is near the wall, where T << i, which leads ultimately 
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tO the appearance of the computing instability. Introduction of a small parameter e into 
the equation of motion 

+ 

S d-F= Ora n r  + 

enables one to establish a "normal" order of determination of the velocity and concentra- 
tion. At the same time, the pressure over the whole volume is almost constant during the 
whole of the calculation time. From the system of different equations 

+ ,,., ,,.. ,+,,. ++" [(n~,./,,)'~:v~+,/,+v.,,. ,,~.,-.++1 T;,+I) 
- T ~  +1 - -  T i  m + ~ (nT)j. (1)j+ 1 - -  Uj -1)  = " ~  g i r ~ l / '  u2j ,1] ,  I , l j +  1 - -  ' - -  

I n S  imTm m m + t  T m + l  } 3~'r m m * m m m m 
__ ', j-'ld J-V, 6U_,[, (Tj - -  +-1 ) + ~ (HJ+I - -  Hi-i) tS~ H i (Hj+x - -  Hi-l) '~. 

+ +- +.:,,... } + 
�9 [ ( T ;  -- 7)' 

- -  5xi~_v,nj~,/,Ti~v, (H~ TM. - -  H~_0} - -  ~ a (njm) 2 ~ ( T i m .  ";)' + "p 

(5.2) 

l t m ~  (At)Z exp ( tm ~ exp(i:-~--x~)~i} 
,~j -7 -AT/' e - t 

-~  ~ / ,~ _ +  (H~,/.)z ns%~,/ ,  ( n ~ / . ) ~  (5 .3 )  
vT +' = v.+ "+ ' . -  8 " V  i, n..++,/,.,+ j+,/, + ~ t+o ! 

xF+' = +],'+ + +vF++ (5 .4 )  
+~++~ = +~ (5.5) 

H~+l H; m 4+ m m t ~ l - . + l  H?+I) __ (5.6) 
n~ +~ nj ~ = ~ {6+J+'IJlJ+'] + ~++ ~++ -- 

"~ .ore nt ) m m + l  Tm+l ", om m - ~ m + l  ~ . m  , .m+l  H~_~I)} .~ "-~/01j+V]zj+,/" ~tj+: t __ J ) __ oaj_V.nj_V " i l  j _ T~_I1)} - -  u0j_qz++ j-% ~J+ j - -  

i t  c a n  b e  s e e n  t h a t  t h e  f i e l d  a n d ,  t o  a h i g h  a c c u r a c y ,  t h e  m a s s  a r e  c o n s e r v e d  i n  t h e  c o n -  
s i d e r e d  v o l u m e .  The d i f f e r e n c e  e q u a t i o n s  o f  h e a t  c o n d u c t i o n  and d i f f u s i o n  o f  t h e  m a g n e t i c  
f i e l d  w e r e  s o l v e d  by  t h e  sweep m e t h o d .  The c o m p l e t e  s y s t e m  o f  e q u a t i o n s  i s  c o n d i t i o n a l l y  
stable. The time step was determined by 

T :  ~ m i n ( A x / ) / ( l  + m a x l v ~ [ )  
J J 

w h e r e  a was c h o s e n  f r o m  t h e  c o n d i t i o n  o f  c o n s e r v a t i o n  o f  t h e  i n t e g r a l  ~ H ( x ) d x .  F o r  a l l  

0 

t h e  c a l c u l a t e d  v a r i a n t s ,  t h e  i n t e g r a l  was  c o n s e r v e d  w i t h i n  t h e  r a n g e  0 - 0 . 3 .  
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6. Main Results 

Let us list the main results. We have demonstrated the possibility of containment 
of a dense plasma by walls. We have obtained acceptable solutions with a temperature 
drop from thermonuclear values to T x ~ 105~ We have established the characteristic 
features of nonmagnetic containment of a dense plasma: flow of plasma and the formation 
of a wall layer. We have shown that although these features do lead to additional energy 
losses from the plasma, the relative amount of these losses is of order unity. Therefore, 
the energy lifetime of the plasma remains of the same order as in the case of pure heat 
conduction, and it can be estimated by T ~ L2/~ where ~I is the thermal conductivity 
coefficient (classical or Bohm). 
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